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Abstract Given a non-polar compact set K, we define the n-th Widom factor Wn(K) as
the ratio of the sup-norm of the n-th Chebyshev polynomial on K to the n-th degree of its
logarithmic capacity. By G. Szegő, the sequence (Wn(K))∞n=1 has subexponential growth.
Our aim is to consider compact sets with maximal growth of the Widom factors. We show
that for each sequence (Mn)

∞
n=1 of subexponential growth there is a Cantor-type set whose

Widom’s factors exceed Mn. We also present a set K with highly irregular behavior of the
Widom factors.

Keywords Logarithmic capacity · Chebyshev numbers · Cantor sets

Mathematics Subject Classifications (2010) 31A15 · 30C85 · 41A50 · 28A80

1 Introduction

Let K be a compact subset of C consisting of infinitely many points. By Tn,K we denote
the corresponding Chebyshev polynomial, that is the unique monic polynomial of degree n

for which its supremum norm tn(K) := ||Tn,K ||K is minimal among all monic polynomials

of the same degree. By M. Fekete [4], there exists lim
n→∞ tn(K)

1
n .

G. Szegő [9] showed that this limit coincides with Cap(K),the logarithmic capacity of K .
It is a consequence of logarithmic subadditivity of Chebyshev’s numbers tn(K) that

tn(K) ≥ Capn(K).

This inequality is sharp, since tn(D) = 1 and Cap(D) = 1.
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Department of Mathematics, Texas A&M University, College Station, TX 77843, USA
e-mail: burakhatinoglu@math.tamu.edu

Author's personal copy

mailto:goncha@fen.bilkent.edu.tr
mailto:burakhatinoglu@math.tamu.edu


672 A. Goncharov, B. Hatinoğlu

Let us define n-th Widom factor of a non-polar compact set K ⊂ C as

Wn(K) := tn(K)

Capn(K)
.

Thus, Wn(K) ≥ 1 and the sequence (Wn(K))∞n=1 has subexponential growth, that is
n−1 ln Wn(K) → 0 as n → ∞. The problem of behavior of Widom’s factors attracted the
attention of many researches. Section 2 is a brief review of relevant results.

Usually the values W(K) := lim infn Wn(K) are estimated for different compact sets.
Here we analyze the case of maximal growth of the Widom factors. In Section 3 we calculate
W2s (K(γ )) for weakly equilibrium Cantor-type sets introduced in [5].

In Section 4 we show that for each sequence (Mn)
∞
n=1 of subexponential growth there

is K(γ ) whose Widom’s factors exceed Mn. Thus, it is not possible to find a sequence
(Mn)

∞
n=1 of subexponential growth and a constant C>0 such that the inequality

Wn(K) ≤ C · Mn

is valid for all non-polar compact sets and for all n ∈ N.
In the last section we construct a Cantor-type set K with highly irregular behavior

of Widom’s factors. Namely, one subsequence of (Wn(K))∞n=1 converges (as fast as we
wish) to the value 2, which is the smallest possible accumulation point for Wn(K) if
K ⊂ R,whereas another subsequence exceeds any sequence (Mn)

∞
n=1 of subexponential

growth given beforehand.
For basic notions of logarithmic potential theory we refer the reader to [7], log denotes

the natural logarithm.

2 Some Estimations of Widom’s Factors

Here we give a brief exposition of the relevant material in our terms. Exact values of Wn(K)

for all n are known only for a few cases. For instance, Wn(D) = 1 and Wn([−1, 1]) = 2 for
all n ∈ N.

An easy computation shows that Widom’s factors are invariant under dilation and
translation:

Wn(λK + z) = tn(λK + z)

Capn(λK + z)
= λn tn(K)

(λ Cap(K))n
= Wn(K),

where λ > 0, z ∈ C.
N.I. Achieser showed in [1] and [2] that, even in simple cases, the behavior of the

sequence (Wn(K))∞n=1 is rather irregular.

Theorem 2.1 ([1, 2]) Let K be a union of two disjoint closed intervals. If there exists a
polynomial Pn such that P −1

n ([−1, 1]) = K , then (Wn(K))∞n=1 has a finite number of
accumulation points from which the smallest is 2.

Otherwise, if there is no Pn with P −1
n ([−1, 1]) = K , then the accumulation points of

(Wn(K))∞n=1 fill out an entire interval of which the left endpoint is 2.

Thus, W([a, b] ∪ [c, d]) = 2. In 2008 K. Schiefermayr generalized Theorem 2.1 to any
real compact set.

Theorem 2.2 ([8], T.2) Let K ⊂ R be a non-polar compact set. Then Wn(K) ≥ 2 for each
n ∈ N, where W(K) = 2 if K is a polynomial preimage of [−1, 1].
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Widom Factors 673

Recently, V. Totik showed that the interval is the only real compact set for which Wn(K)

converge to 2.

Theorem 2.3 ([12], T.3) If K ⊂ R is not an interval, then there is a c>0 and a subsequence
N of the natural numbers such that Wn(K) ≥ (2 + c) for n ∈ N .

Specifically, in the case when K is a finite union of disjoint intervals, V. Totik found the
best possible rate of convergence of subsequences from (Wn(K))∞n=1.

Theorem 2.4 ([11], T.3) Let K ⊂ R be a compact set consisting of l intervals. Then there
is a constant C such that for infinitely many n

Wn(K) ≤ 2(1 + C n−1/(l−1)).

This upper bound is the best possible, because of the following result.

Theorem 2.5 ([11], T.4) For every l > 1 there are a set K consisting of l intervals and a
constant c > 0 such that for all n

Wn(K)>2(1 + c n−1/(l−1)).

We suggest the name Widom factor for Wn(K) because of the fundamental paper [13],
where H. Widom considered K ⊂ C that are finite unions of smooth Jordan curves and
showed that W(K) = 1 for this case. Earlier, G. Faber in [3], using polynomials now named
after him, showed that Wn(K) → 1 as n → ∞ for a single analytic curve K . For a treatment
of more general complex compact sets we refer the reader to [12].

Concerning the upper bounds for (Wn(K))∞n=1, H. Widom showed in [13] that in the case
of finite unions of disjoint intervals, this sequence is bounded. Actually, he did not explicitly
present this result, but V. Totik stated it as a consequence of Theorem 11.5 in [13] and gave
another proof using polynomial inverse images.

Theorem 2.6 ([10], T.1) Let K ⊂ R consist of finitely many disjoint intervals. Then there
is a constant C depending only on K such that Wn(K) ≤ C for all n ∈ N.

Let us show that for some Cantor-type sets the sequence (Wn(K))∞n=1 is unbounded and
any subexponential growth can be achieved.

3 Widom’s Factors for Weakly Equilibrium Cantor-type Sets

For the convenience of the reader we repeat the relevant material from [5]. Given sequence
γ = (γs)

∞
s=1 with 0 < γs < 1/4,let r0 = 1 and rs = γsr

2
s−1 for s ∈ N. Define P2(x) =

x(x − 1) and P2s+1 = P2s (P2s + rs) for s ∈ N. Then, by Lemma 1 in [5], P ′
2s has 2s − 1

simple zeros, where 2s−1 of them are minima of P2s with equal values P2s = −r2
s−1/4 and

remaining 2s−1 − 1 extrema are local maxima of P2s with positive values.
Consider the set Es := {x ∈ R : P2s+1(x) ≤ 0} = ∪2s

j=1Ij,s . The s-th level intervals Ij,s

are disjoint and max1≤j≤2s |Ij,s | → 0 as s → ∞. Since Es+1 ⊂ Es , we have a Cantor type
set K(γ ) := ∩∞

s=0Es . In favor of this set, in comparison to usual Cantor-type sets, K(γ )
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674 A. Goncharov, B. Hatinoğlu

represents an intersection of polynomial inverse images of intervals. Indeed, the set Es can
also be presented as ( 2

rs
P2s +1)−1([−1, 1]). For many interesting properties of polynomial

inverse images and for a characterization of polynomial inverse images of intervals see e.g.
[6] and other related papers by F. Peherstorfer.

The set K(γ ) is non-polar if and only if

∞∑

n=1

2−n log
1

γn

< ∞, (3.1)

where the last sum gives the value of the Robin constant for the set K(γ ). By Proposition
1 in [5], the polynomial P2s + rs/2 is the 2s−th degree Chebyshev polynomial on K(γ ).
From here we get

Proposition 3.1 Assume (γs)
∞
s=1 with 0 < γs < 1/4 satisfies (3.1). Then for s ∈ Z+

W2s (K(γ )) = 1

2
exp

⎛

⎝2s

∞∑

n=s+1

2−n log
1

γn

⎞

⎠ . (3.2)

Indeed, Cap(K(γ )) = exp(−Rob(K(γ )) = exp

( ∞∑
n=1

2−n log γn

)
. On the other hand,

t2s (K(γ )) = ||P2s + rs/2||K(γ ) = rs/2 = 1
2 exp

(
2s

s∑
n=1

2−n log γn

)
,as is easy to check.

Now we can present a compact set with unbounded sequence of Widom’s factors.

Example 3.2 For a fixed M > 4, let γs = M−s for s ∈ N. Then W2s (K(γ )) = Ms+2/2.

By Theorem 3 in [5], in the case inf γs > 0,the set K(γ ) is uniformly perfect. Recall that
a compact set K is uniformly perfect if it has at least two points and the moduli of annuli in
the complement of K which separate K are bounded.

Example 3.3 Assume γ0 ≤ γs < 1/4 for s ∈ N. Then 2 < W2s (K(γ )) ≤ 1/2γ0.

It is interesting that Proposition 3.1 and Example 3.3 are also valid in the limit case, when
γs = 1/4 for some s. For example, let γs = 1/4 for all s (compare this with Example 1 in
[5]). Then all local maxima of P2s are equal to 0. Therefore, Es = [0, 1] for each s,K(γ ) =
[0, 1] and Wn(K(γ )) = 2 for all n. On the other hand, T2s , K(γ )(x) = P2s (x) + rs/2 =
21−2s+1

T2s (2x −1) for s ∈ N,where Tn stands for the classical Chebyshev polynomial, that
is Tn(t) = cos(n arccos t) for |t | ≤ 1. Thus, in the limit case, t2s (K(γ )) = 21−2s+1

. Since
Cap[0, 1] = 1/4,we get W2s (K(γ )) = 2,which coincides with the value of the expression
on the right in Eq. 3.2.

By Theorem 2.2, Wn(K) ≥ 2 for any compact set on the line. Let us show that, for large
Cantor sets K(γ ), the value 2 can be achieved by W2s (K(γ )) as fast as we wish (compare
this with Theorems 2.4 and 2.5).

Theorem 3.4 For each monotone null sequence (σs)
∞
s=0 there is a Cantor set K such that

W2s (K) = 2(1 + σs) for all s.
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Widom Factors 675

Proof Let us take γn = 1/4 · (1 + δn)
−1,where (δn)

∞
n=1 will be defined later. Then

W2s (K(γ )) = 1

2
exp

⎡

⎣ 2s
∞∑

n=s+1

2−n(log 4 + log(1 + δn))

⎤

⎦

= 2 exp

⎡

⎣
∞∑

n=s+1

2s−n log(1 + δn)

⎤

⎦ .

This takes the desired value, if the system of equations

∞∑

n=s+1

2s−n log(1 + δn) = log(1 + σs), s ∈ Z+

with unknowns (δn)
∞
n=1 is solvable. Multiplying the s−th equation by 2 and subtracting the

(s + 1)−th equation yields δs+1 = (2 σs +σ 2
s −σs+1)(1 +σs+1)

−1 for s ∈ Z+. Since these
values are positive, the set K(γ ) is well-defined.

4 Widom’s Factors of Fast Growth

First let us show how to construct K ⊂ R with preassigned values of a subsequence
of the Widom factors. Recall that a sequence (Mn)

∞
n=1 with Mn ≥ 1 for n ∈ N has a

subexponential growth if limn→∞ log Mn/n = 0.

Proposition 4.1 Suppose we are given a sequence (Mn)
∞
n=1 of subexponential growth with

Mn > 1 for all n ∈ N and a strictly monotone sequence (log Mn/n)∞n=1. Then there exists
K(γ ) such that W2s (K(γ )) = 2 · M2s for s ∈ Z+.

Proof Let us define βn = log Mn/n. Then βn ↘ 0 and the series
∞∑

n=s+1
(β2n−1 − β2n)

converges to β2s . By assumption, M2s < M2
2s−1 for all s ∈ N. Let us take γs =

4−1 exp
[−2s(β2s−1 − β2s )

] = 4−1M2s /M2
2s−1 . Then γs < 1/4 for all s ∈ N and the set

K(γ ) is well-defined and is not polar. By Proposition 3.1,

W2s (K(γ )) = 1

2
exp

⎡

⎣2s
∞∑

n=s+1

2−n(ln 4 + 2n(β2n−1 − β2n))

⎤

⎦ = 2 exp(2s β2s ) = 2 M2s .

Corollary 4.2 For every C with 2 ≤ C < ∞ there exists K ⊂ R and a subsequence
N ⊂ N such that Wn(K) = C for all n ∈ N .

Proof If C = 2 then K can be taken as any interval. If C > 2 then define Mn = C/2 for
all n and apply the theorem.

In the next theorem we show that any subexponential growth of Widom’s factors can be
exceeded for small sets K(γ ). We begin with the following regularization lemma.
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Lemma 4.3 For every sequence (mn)
∞
n=1 of subexponential growth and α < 1 there is an

increasing sequence (Mn)
∞
n=1 of subexponential growth with Mn = exp(n · βn) ≥ mn for

all n such that β1 ≥ 1,the sequence (β2s )∞s=0 decreases and β2s ≥ αβ2s−1 for s ∈ N.

Proof First we take the increasing majorant Mn = supk≤n mk . Then Mn ↗ and has
subexponential growth. Since for each constant C the sequence (Mn + C)∞n=1 is of subex-
ponential growth, we can assume at once that β1 = log M1 ≥ 1. We can also suppose that
βn ↘ 0,since otherwise the replacement of βn by supk≥n βk only enlarges (Mn)

∞
n=1 and

preserves its monotonicity. Thus it remains to provide the condition β2s ≥ α β2s−1 for s ∈ N

and α < 1. Without loss of generality we can assume 1/2 < α.
Fix the first S ≥ 0 for which β2S+1 < α β2S . Let us take the new values β̃2S+1 = α β2S

and β̃2S+k = max{β2S+k , α β̃2S+k−1} for k ≥ 2. Therefore,

β̃2S+k = max
{
β2S+k , α β2S+k−1 , · · · , αj β2S+k−j , · · · , αk β2S

}
. (4.1)

Here the term αk−1 β2S+1 can be excluded from the set in braces since it is smaller then the
last one. We preserve the previous values: β̃2s = β2s for s ≤ S.

Let us show that β̃2s ↘ 0 as s → ∞. For monotonicity we see that β̃2s ≤ β̃2s−1 for
s ≤ S since the sequence (βn)

∞
n=0 was monotone before the transformation. Also, β̃2S+k+1 =

max{β2S+k+1 , α β̃2S+k } ≤ max{β2S+k , β̃2S+k } = β̃2S+k for k ∈ N. In addition, the general
term αj β2S+k−j in Eq. 4.1 will be as small as we wish for large enough k. Indeed, let
m = [k/2] be the greatest integer at k/2. The separate estimation for the cases 0 ≤ j ≤ m

and m + 1 ≤ j ≤ k yields the bound β̃2S+k ≤ max
{
β2S+k−m, αm+1β2S

}
.

Define M̃2s = exp(2s · β̃2s ). Since 2β̃2s+1 = 2 max{β2s+1 , α β̃2s } ≥ 2α β̃2s > β̃2s ,as
1/2 < α,we observe that M̃2s ↗. But we need monotonicity of the whole sequence
(M̃n)

∞
n=1. In order to get it, we introduce new intermediate values β̃n for 2s < n < 2s+1 as

β̃n = max{βn, 2s/n · β̃2s },whereas the values β̃2s for s ∈ Z+ will not be changed.
If 2s < n ≤ 2s+1 − 2 then (n+ 1)β̃n+1 = max{(n+ 1)βn+1, 2s β̃2s } ≥ nβ̃n,since we had

(n + 1)βn+1 ≥ nβn for the previous values.
If n = 2s+1 − 1 then the value β̃n+1 is given, so we need to check that 2s+1β̃2s+1 ≥

(2s+1 − 1)β̃2s+1−1 = max{(2s+1 − 1)β2s+1−1, 2s β̃2s }. This is valid due to the monotonicity
of (Mn)

∞
n=1 and (M̃2s )∞s=0.

We do not require the monotonicity of β̃n. Since at any step we only increase the
sequence, we have M̃n ≥ mn for all n. Removing the tilde from M̃n and β̃n gives the desired
sequence.

Theorem 4.4 For every (Mn)
∞
n=1 of subexponential growth there exists K(γ ) such that

Wn(K(γ )) > Mn for all n ∈ N.

Proof Let us write γk in the form γk = 1
4 exp(−2k · ak) for k ∈ N. If ak ≥ 0 and

∞∑
k=1

ak <

∞ then the set K(γ ) is well-defined and is not polar. In addition, as is easy to check,

W2s (K(γ )) = 2 exp

(
2s

∞∑
k=s+1

ak

)
.

We use logarithmic subadditivity of Widom’s factors. Since tm+r (K) ≤ tm(K)·tr (K),we
have Wm+r (K) ≤ Wm(K) · Wr(K) for all m, r ∈ N and each non-polar compact set K . Let
2s < n < 2s+1 for some s ∈ N. Then n can be represented in the form

n = 2s+1 − 2p1 − 2p2 − · · · − 2pm
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Widom Factors 677

with 0 ≤ p1 < p2 < · · · < pm ≤ s − 1. Therefore, W2s+1 ≤ Wn · W2p1 · W2p2 · · ·W2pm ≤
Wn · W1 · W2 · W4 · · ·W2s−1 ,since Wk ≥ 1. Here and in the next line we omit the argument
K(γ ) of the Widom factors. In our case, W1 · W2 · W4 · · ·W2s−1 =

2s exp

( ∞∑

k=1

ak + 2
∞∑

k=2

ak + · · · + 2s−1
∞∑

k=s

ak

)
= 2s exp

(
2s

∞∑

k=s

ak +
s−1∑

k=1

2kak −
∞∑

k=1

ak

)
.

From here, for 2s < n < 2s+1 we get

Wn(K(γ )) ≥ 21−s exp

⎛

⎝2s+1
∞∑

k=s+2

ak − 2s
∞∑

k=s

ak −
s−1∑

k=1

2kak +
∞∑

k=1

ak

⎞

⎠ . (4.2)

We can assume that (Mn)
∞
n=1 satisfies all conditions given in Lemma 4.3, where α < 1

is chosen such that

4 − 3

α(2α − 1)
> log 2. (4.3)

This can be achieved as the expression on the left has the limit 1 as α ↗ 1.

Let us take ak = 3(β2k−1 − β2k ) for k ∈ N, so
∞∑

k=m

ak = 3 · β2m−1 . Then W2s (K(γ )) =
2 exp(3 · 2s · β2s ) which exceeds M2s = exp(2s · β2s ) for s ∈ Z+.

Our next objective is to write the expression in parentheses in Eq. 4.2 in terms of

(β2s )∞s=0. An easy computation shows that
s−1∑
k=1

2kak = 3

(
−2s−1β2s−1 +

s−2∑
k=0

2k β2k + β1

)

and the whole expression is 3

(
2s+1β2s+1 −

s−1∑
k=0

2k β2k

)
. Therefore,

Wn(K(γ )) ≥ exp

[
3 · 2s+1β2s+1 − 3

s−1∑

k=0

2k β2k − (s − 1) log 2

]
.

Since the sequence (Mn)
∞
n=1 increases and 2s < n < 2s+1 for some s ≥ 1,it suffices to

prove that Wn(K(γ )) ≥ exp(2s+1β2s+1) or

2s+2β2s+1 ≥ 3
s−1∑

k=0

2k β2k + (s − 1) log 2.

By Lemma 4.3, β2k ≤ α−s−1+kβ2s+1 . Therefore,

s−1∑

k=0

2k β2k ≤ 2s+1β2s+1

s−1∑

k=0

(2α)−s−1+k < 2s+1β2s+1
1

2α(2α − 1)
.

In this way we reduce the desired inequality to

2s+1β2s+1

[
2 − 3

2α(2α − 1)

]
≥ (s − 1) log 2.

By Eq. 4.3, the expression in square brackets exceeds log 2/2,so it is enough to check
that 2s+1β2s+1 ≥ 2(s − 1) or (2α)s+1β1 ≥ 2(s − 1). This is valid since β1 ≥ 1 and
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678 A. Goncharov, B. Hatinoğlu

maxs≥1
2(s−1)

(2α)s+1 = 1
4 α4 for α > 3/4. The condition (4.3) provides that α > 3/4 and

4 α4 > 1.

In the general case the behavior of Wn(K(γ )) may be highly irregular.

5 The Irregular Case

Here we combine the previous results. The following example illustrates the construction in
the last theorem.

Example 5.1 Suppose we are given an increasing sequence of natural numbers (sj )
∞
j=1 and

a sequence (εj )
∞
j=1 of positive numbers with ε1 ≤ 1 and εj ↘ 0 as j → ∞. Let us take

γs = γ0 < 1/4 for s 
= sk and γsj = γ0 εj otherwise. By Eq. 3.1, the set K(γ ) is not polar
if and only if

∞∑

j=1

2−sj log
1

εj

< ∞. (5.1)

By Proposition 3.1,

W2sj (K(γ )) = 1/2γ0 · exp

⎛

⎝2sj

∞∑

k=j+1

2−sk log
1

εk

⎞

⎠ .

If we take, for a given sj , a large enough value of sj+1,then W2sj (K(γ )) can be obtained
as closed to 1/2γ0 as we wish.

On the other hand,

W
2sj −1(K(γ )) = 1

2
exp

⎛

⎝2sj −1
∞∑

n=sj

2−n log
1

γn

⎞

⎠ .

Taking into account only the first term in the series, we get

W
2sj −1(K(γ )) >

1

2

1√
γ0 εj

>
1√
εj

,

which may be large for small εj satisfying (5.1).

Let us construct a set K(γ ) for which both behaviours of subsequences (as in Theorem
3.4 and Theorem 4.4) are possible.

Theorem 5.2 For any sequences (σj )
∞
j=0 with σj ↘ 0 and (Mn)

∞
n=1 of subexponential

growth with Mn → ∞ there exists a sequence (γs)
∞
s=1 such that for the corresponding set

K(γ ) there are two sequences (sj )
∞
j=1 and (qj )

∞
j=1 with W2sj (K(γ )) < 2(1 + σj ) and

W2qj (K(γ )) > M2qj for all j ∈ N.

Proof Without loss of generality we can assume σ1 ≤ 1 and Mn ≥ 1 for all n. For the
sequences (sj )

∞
j=1, (εj )

∞
j=1 that will be specified later, we define γs = (4

√
1 + σj )

−1 for

sj < s < sj+1 and γsj = εj (4
√

1 + σj )
−1. Also we take qj = sj − 1. Then, as above,

W2qj (K(γ )) >
1

2

1√
γsj

>
1√
εj

,

so we can take εj = M−2
2sj −1 .
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On the other hand, W2sj (K(γ )) = 1
2 exp

[
2sj

∞∑
n=sj +1

2−n log 1/γn

]
with

∞∑

n=sj +1

2−n log
1

γn

=
∞∑

n=sj +1,n
=sk

2−n log
1

γn

+
∞∑

k=j+1

2−sk log(4
√

1 + σk) +
∞∑

k=j+1

2−sk log
1

εk

.

We combine the first two sums on the right:
∞∑

k=j+1

sk+1∑

n=sk+1

2−n log(4
√

1 + σk) < 2−sj log(4
√

1 + σj ),

since (σk)
∞
k=0 decreases. From here,

W2sj (K(γ )) < 2
√

1 + σj exp

⎡

⎣ 2sj

∞∑

k=j+1

2−sk log
1

εk

⎤

⎦

and we have the desired result if the expression in square brackets does not exceed
log(

√
1 + σj ) or, by definition of εk ,

∞∑

k=j+1

2sj −sk log M2sk−1 <
1

4
log(1 + σj ). (5.2)

This can be achieved if we ensure for all k

2sk−1−sk log M2sk−1 <
1

8
log(1 + σk). (5.3)

Indeed, provided (5.3), the k−th term in the series above is

2sj −sk−1 2sk−1−sk log M2sk−1 < 2sj −sk−1
1

8
log(1 + σk) < 2sj −sk−1

1

8
log(1 + σj ),

by monotonicity of (σk)
∞
k=0. Summing these terms, we get (5.2).

Thus it remains to choose (sk)
∞
k=1 satisfying (5.3). This can be done recursively since

(Mn)
∞
n=1 has subexponential growth and 2−sk+1 log M2sk−1 can be taken smaller than

2−sk−1−2 log(1 + σk) for large enough sk . Clearly, (5.2) implies (5.1). Hence the set K(γ )

is well-defined and is not polar.
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4. Fekete, M.: Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen
Koeffizienten. Math. Z. 17, 228–249 (1923). (in German)

5. Goncharov, A.P.: Weakly Equilibrium Cantor-type Sets. Potential Anal. 40, 143–161 (2014)
6. Peherstorfer, F.: Orthogonal and extremal polynomials on several intervals. J. Comput. Appl. Math. 48,

187–205 (1993)
7. Ransford, T.: Potential Theory in the Complex Plane. Cambridge University Press, Cambridge (1995)
8. Schiefermayr, K.: A Lower Bound for the Minimum Deviation of the Chebyshev Polynomials on a

Compact Real Set. East J. Approximations 14, 223–233 (2008)

Author's personal copy



680 A. Goncharov, B. Hatinoğlu
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